Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1333286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606070

RESUMO

Citrus fruits, revered for their nutritional value, face significant threats from diseases like citrus canker, particularly impacting global citrus cultivation, notably in Pakistan. This study delves into the critical role of NPR1-like genes, the true receptors for salicylic acid (SA), in the defense mechanisms of citrus against Xanthomonas axonopodis pv. citri (Xcc). By conducting a comprehensive genome-wide analysis and phylogenetic study, the evolutionary dynamics of Citrus limon genes across diverse citrus cultivars are elucidated. Structural predictions unveil conserved domains, such as the BTB domain and ankyrin repeat domains, crucial for the defense mechanism. Motif analysis reveals essential conserved patterns, while cis-regulatory elements indicate their involvement in transcription, growth, response to phytohormones, and stress. The predominantly cytoplasmic and nuclear localization of NPR1-like genes underscores their pivotal role in conferring resistance to various citrus species. Analysis of the Ks/Ka ratio indicates a purifying selection of NPR1-like genes, emphasizing their importance in different species. Synteny and chromosomal mapping provide insights into duplication events and orthologous links among citrus species. Notably, Xac infection stimulates the expression of NPR1-like genes, revealing their responsiveness to pathogenic challenges. Interestingly, qRT-PCR profiling post-Xac infection reveals cultivar-specific alterations in expression within susceptible and resistant citrus varieties. Beyond genetic factors, physiological parameters like peroxidase, total soluble protein, and secondary metabolites respond to SA-dependent PR genes, influencing plant characteristics. Examining the impact of defense genes (NPR1) and plant characteristics on disease resistance in citrus, this study marks the inaugural investigation into the correlation between NPR1-associated genes and various plant traits in both susceptible and resistant citrus varieties to citrus bacterial canker.

2.
Saudi J Biol Sci ; 31(4): 103959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38404540

RESUMO

Cucumber is an essential vegetable crop throughout the world. Cucumber development is vital for accomplishing both quality and productivity requirements. Meanwhile, numerous factors have resulted in substantial cucumber losses. However, the calreticulin domain-encoding genes (CDEGs) in cucumber were not well-characterized and had little function. In the genome-wide association study (GWAS), we recognized and characterized the CDEGs in Cucumis sativus (cucumber). Through a comprehensive study of C. sativus, our research has unveiled the presence of three unique genes, denoted as CsCRTb, CsCRT3, and CsCNX1, unevenly distributed on three chromosomes in the genome of C. sativus. In accordance to the phylogenetic investigation, these genes may be categorized into three subfamilies. Based on the resemblance with AtCDE genes, we reorganized the all CsCDE genes in accordance with international nomenclature. The expression analysis and cis-acting components revealed that each of CsCDE gene promoter region enclosed number of cis-elements connected with hormone and stress response. According to subcellular localization studies demonstrated that, they were found in deferent locations of the cell such as endoplasmic reticulum, plasma membrane, golgi apparatus, and vacuole, according to subcellular localization studies. Chromosomal distribution analysis and synteny analysis demonstrated the probability of segmental or tandem duplications within the cucumber CDEG gene family. Additionally, miRNAs displayed diverse modes of action, including mRNA cleavage and translational inhibition. We used the RNA seq data to analyze the expression of CDEG genes in response to cold stress and also improved cold tolerance, which was brought on by treating cucumber plants to an exogenous chitosan oligosaccharide spray. Our investigation revealed that these genes responded to this stress in a variety of ways, demonstrating that they may adapt quickly to environmental changes in cucumber plants. This study provides a base for further understanding in reference to CDE gene family and reveals that genes play significant functions in cucumber stress responses.

3.
Plant Physiol Biochem ; 206: 108222, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016371

RESUMO

Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.


Assuntos
Prunus avium , Prunus avium/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Cianeto de Hidrogênio/metabolismo , Flores/genética , Proteínas de Plantas/genética , Nanopartículas Magnéticas de Óxido de Ferro , Regulação da Expressão Gênica de Plantas , Dormência de Plantas
4.
Protoplasma ; 261(1): 125-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37550558

RESUMO

Quercetin is a bioactive natural compound with an antioxidative property that can potentially modify plant physiology. The current investigation aimed to gauge the effect of different concentrations of foliar spray of quercetin (0, 0.5, 1, 1.5, 2.0 mM) on several morphological and physio-biochemical performances of Abelmoschus esculentus L. (Moench.) plants under normal environmental conditions. The foliar spray on the plant leaves was applied 25 days after sowing (DAS) and continued up to 30 DAS once each day. The plants were sampled at 30 and 45 DAS to monitor several parameters. The foliar treatments of quercetin significantly upgraded all the studied parameters. The results direct that most of the traits such as growth, nutrient uptake, photosynthetic, and enzyme activities were promoted in a dose-dependent way. Quercetin application lowered the reactive oxygen species (ROS) buildup by increasing the antioxidant enzyme activities. Microscopic investigations further revealed a significant enhancement in the stomatal aperture under quercetin application. Out of several doses tested, 1 mM of quercetin proved best and can be used for further investigations.


Assuntos
Abelmoschus , Quercetina , Quercetina/farmacologia , Quercetina/metabolismo , Abelmoschus/química , Abelmoschus/metabolismo , Antioxidantes/metabolismo , Açúcares/metabolismo , Oxirredução
5.
Physiol Mol Biol Plants ; 29(10): 1563-1575, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076764

RESUMO

The changing global climate have given rise to abiotic stresses that adversely affect the metabolic activities of plants, limit their growth, and agricultural output posing a serious threat to food production. The abiotic stresses commonly lead to production of reactive oxygen species (ROS) that results in cellular oxidation. Over the course of evolution, plants have devised efficient enzymatic and non-enzymatic anti-oxidative strategies to counteract harmful effects of ROS. Among the emerging non-enzymatic anti-oxidative technologies, the chloroplast lipophilic antioxidant vitamin A (Tocopherol) shows great promise. Working in coordination with the other cellular antioxidant machinery, it scavenges ROS, prevents lipid peroxidation, regulates stable cellular redox conditions, simulates signal cascades, improves membrane stability, confers photoprotection and enhances resistance against abiotic stresses. The amount of tocopherol production varies based on the severity of stress and its proposed mechanism of action involves arresting lipid peroxidation while quenching singlet oxygen species and lipid peroxyl radicals. Additionally, studies have demonstrated its coordination with other cellular antioxidants and phytohormones. Despite its significance, the precise mechanism of tocopherol action and signaling coordination are not yet fully understood. To bridge this knowledge gap, the present review aims to explore and understand the biosynthesis and antioxidant functions of Vitamin E, along with its signal transduction and stress regulation capacities and responses. Furthermore, the review delves into the light harvesting and photoprotection capabilities of tocopherol. By providing insights into these domains, this review offers new opportunities and avenues for using tocopherol in the management of abiotic stresses in agriculture.

6.
Plant Physiol Biochem ; 203: 108047, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37748371

RESUMO

Salicylic acid (SA) is a well-known signaling molecule and phenolic plant hormone. However, the optimal concentration of SA required for beneficial effects may vary across different plant species. The objective of this study was to investigate the effects of salicylic acid (SA) on two different varieties of Abelmoschus esculentus (Sakata-713 and Neelam) in order to determine the optimal concentration of SA and its impact on the growth, physiology, and biochemical processes of the plants. We conducted an experiment applying different SA concentrations (0, 10-4, 10-5, 10-6, 10-7 M) at 25 days after sowing (DAS) and evaluated various plant parameters at different stages. To evaluate various parameters sampling was performed at 30 and 45 DAS; yield traits were calculated at 60 DAS. The results indicate that SA application increased cell division, trichome number, chlorophyll content, photosynthesis, gas exchange traits, and elemental status which further boosted plants growth and yield traits. SA application stimulated activity of several enzymes that participate in carboxylation/decarboxylation homeostasis (carbonic anhydrase), nitrogen metabolism (nitrate reductase), Calvin cycle (Rubisco), TCA cycle (succinate dehydrogenase and fumarase) and secondary metabolism (phenylalanine lyase). A gradual increase in the production of secondary metabolites (total phenol, total flavonoid, anthocyanin) and carbon metabolism (total reducing sugars, starch, glucose, fructose, sucrose) was observed. Notably, SA treatment also played a vital role in maintaining a balanced equilibrium between reactive oxygen species (ROS) and the scavenging system (catalase, peroxidase, superoxide dismutase). Based on our results, the optimal concentration of SA was determined to be 10-5 M, as it yielded the most favourable outcomes among the different concentrations tested. Moreover, when comparing the two varieties of okra, Sakata-713 exhibited a more promising response to SA treatment compared to Neelam.

7.
Foods ; 12(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37174429

RESUMO

As a sustainable food source for humans, mealworms (Tenebrio molitor) have a great deal of potential, due to the fact that they have a very favorable nutritional profile and a low environmental impact. For meal production, feed formulation and optimization are important. The mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) is the most consumed insect in the world. Mealworms were given a variety of diets, including wheat bran as constant diet supplemented with different levels of Ospor (Bacillus clausii) at 0.002 g, 0.004 g, 0.006 g, and 0.008 g; imutec (Lacticaseibacillus rhamnosus) at 0.2 g. 0.4 g, 0.6 g, and 0.8 g; fungi (Calocybe indica) at 250 g, 500 g, and 750 g; yeast (Saccharomyces cerevisiae) at 50 g, 100 g, and 150 g; and wheat bran (standard diet) were examined in complete randomized design (CRD). Different parameters, i.e., the larval, pupal, and adult weight, size, life span, and nutritional profile of mealworm were studied. When compared with other insect growth promoters, only wheat bran was discovered to be the most efficient. It generated the heaviest and longest larvae at 65.03 mg and 18.32 mm, respectively, as well as pupae weighing 107.55 mg and 19.94 mm, respectively, and adults weighing 87.52 mg and 20.26 mm, respectively. It was also determined that fungi (C. indica) and ospor (B. clausii) promoted faster larval development than yeast (S. cerevisiae) and imutec (L. rhamnosus). Larval mortality was also greater in the imutec (L. rhamnosus) and yeast (S. cerevisiae) diets than the others. No pupal mortality was recorded in all diets. Furthermore, the protein content of Tenebrio. molitor raised on a diet including fungi (C. indica) was the highest at (375 g), with a content of 68.31%, followed by a concentration of (250 g) with a content of 67.84%, and wheat bran (1 kg) (normal diet) with the lowest content at 58.91%. T. molitor larvae fed a diet supplemented with bacterial and fungal had lower fat and ash content than bran-fed T. molitor larvae (standard diet). Wheat bran (normal diet) had the highest fat at 16.11%, and ash at 7.71%. Hence, it is concluded that wheat bran alone or diet containing fungi (C. indica) and ospor (B. clausii) performed better in terms of growth, and these diets and protein content are recommended for the mass rearing of mealworms.

8.
PeerJ ; 11: e15272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101788

RESUMO

Bacteriophages are the most abundant biological entity on the planet, having pivotal roles in bacterial ecology, animal and plant health, and in the biogeochemical cycles. Although, in principle, phages are simple entities that replicate at the expense of their bacterial hosts, due the importance of bacteria in all aspects of nature, they have the potential to influence and modify diverse processes, either in subtle or profound ways. Traditionally, the main application of bacteriophages is phage therapy, which is their utilization to combat and help to clear bacterial infections, from enteric diseases, to skin infections, chronic infections, sepsis, etc. Nevertheless, phages can also be potentially used for several other tasks, including food preservation, disinfection of surfaces, treatment of several dysbioses, and modulation of microbiomes. Phages may also be used as tools for the treatment of non-bacterial infections and pest control in agriculture; moreover, they can be used to decrease bacterial virulence and antibiotic resistance and even to combat global warming. In this review manuscript we discuss these possible applications and promote their implementation.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Animais , Bactérias , Infecções Bacterianas/terapia
9.
Plants (Basel) ; 12(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986898

RESUMO

This work was carried out to observe the combined impact of exogenous applications of Gibberellic acid (GA3) and Silicon (Si) on Brassica juncea under salt (NaCl) stress. Application of GA3 and Si enhanced the antioxidant enzyme activities of (APX, CAT, GR, SOD) in B. juncea seedlings under NaCl toxicity. The exogenous Si application decreased Na+ uptake and enhanced the K+ and Ca2+ in salt stressed B. juncea. Moreover, chlorophyll-a (Chl-a), Chlorophyll-b (Chl-b), total chlorophyll (T-Chl), carotenoids and relative water content (RWC) in the leaves declined under salt stress, which were ameorialated after GA3 and Si supplementation individually and in combination. Further, the introduction of Si to NaCl treated B. juncea help in alleviating the negative effects of NaCl toxicity on biomass and biochemical activities. The levels of hydrogen peroxide (H2O2) increase significantly with NaCl treatments, subsequently resulting in enhanced peroxidation of membrane lipids (MDA) and electrolyte leakage (EL). The reduced levels of H2O2 and enhanced antioxidantactivities in Si and GA3 supplemented plants demonstrated the stress mitigating efficiency. In conclusion, it was observed that Si and GA3 application alleviated NaCl toxicity in B. juncea plants through enhanced production of different osmolytes and an antioxidant defence mechanism.

10.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985867

RESUMO

In the current scenario, the rising concentration of heavy metals (HMs) due to anthropogenic activities is a severe problem. Plants are very much affected by HM pollution as well as other abiotic stress such as salinity and drought. It is very important to fulfil the nutritional demands of an ever-growing population in these adverse environmental conditions and/or stresses. Remediation of HM in contaminated soil is executed through physical and chemical processes which are costly, time-consuming, and non-sustainable. The application of nanobionics in crop resilience with enhanced stress tolerance may be the safe and sustainable strategy to increase crop yield. Thus, this review emphasizes the impact of nanobionics on the physiological traits and growth indices of plants. Major concerns and stress tolerance associated with the use of nanobionics are also deliberated concisely. The nanobionic approach to plant physiological traits and stress tolerance would lead to an epoch of plant research at the frontier of nanotechnology and plant biology.

11.
J Biomol Struct Dyn ; 41(21): 12305-12327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36752331

RESUMO

Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , MicroRNAs , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , RNA Viral/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia
12.
Plant Physiol Biochem ; 196: 260-269, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731287

RESUMO

Phytomelatonin is the multifunctional molecule that governs a range of developmental processes in plants subjected to a plethora of environmental cues. It acts as an antioxidant molecule to regulate the oxidative burst through reactive oxygen species (ROS) scavenging. Moreover, it also activates stress-responsive genes followed by alleviating oxidation. Phytomelatonin also stimulates antioxidant enzymes that further regulate redox homeostasis in plants under adverse conditions. This multifunctional molecule also regulates different physiological processes of plants in terms of leaf senescence, seed germination, lateral root growth, photosynthesis, etc. Due to its versatile nature, it is regarded as a master regulator of plant cell physiology and it holds a crucial position in molecular signaling as well. Phytomelatonin mediated oxidative stress management occurs through a series of antioxidative defense systems, both enzymatic as well as non-enzymatic, along with the formation of an array of secondary defensive metabolites that counteract the stresses. These phytomelatonin-derived antioxidants reduce the lipid peroxidation and improve membrane integrity of the cells subjected to stress. Here in, the data from transcriptomic and omics approaches are summarized which help to identify the gene regulatory mechanisms involved in the regulation of redox homeostasis and oxidative stress management. Further, we also recap the signaling cascade underlying phytomelatonin interactions with both ROS and reactive nitrogen species (RNS)and their crosstalk. The discoveries related to phytomelatonin have shown that this regulatory master molecule is critical for plant cell physiology. The current review is focussed the role of phytomelatonin as a multifunctional molecule in plant stress management.


Assuntos
Antioxidantes , Plantas , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas/genética , Estresse Oxidativo , Oxirredução , Estresse Fisiológico
13.
Genes (Basel) ; 14(2)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36833335

RESUMO

The tea plant (Camellia sinensis (L.) O. Ktze) is an important cash crop grown worldwide. It is often subjected to environmental stresses that influence the quality and yield of its leaves. Acetylserotonin-O-methyltransferase (ASMT) is a key enzyme in melatonin biosynthesis, and it plays a critical role in plant stress responses. In this paper, a total of 20 ASMT genes were identified in tea plants and classified into three subfamilies based on a phylogenetic clustering analysis. The genes were unevenly distributed on seven chromosomes; two pairs of genes showed fragment duplication. A gene sequence analysis showed that the structures of the ASMT genes in the tea plants were highly conserved and that the gene structures and motif distributions slightly differed among the different subfamily members. A transcriptome analysis showed that most CsASMT genes did not respond to drought and cold stresses, and a qRT-PCR analysis showed that CsASMT08, CsASMT09, CsASMT10, and CsASMT20 significantly responded to drought and low-temperature stresses; in particular, CsASMT08 and CsASMT10 were highly expressed under low-temperature stress and negatively regulated in response to drought stress. A combined analysis revealed that CsASMT08 and CsASMT10 were highly expressed and that their expressions differed before and after treatment, which indicates that they are potential regulators of abiotic stress resistance in the tea plant. Our results can facilitate further studies on the functional properties of CsASMT genes in melatonin synthesis and abiotic stress in the tea plant.


Assuntos
Camellia sinensis , Melatonina , Camellia sinensis/genética , Filogenia , Resposta ao Choque Frio , Chá
14.
Environ Pollut ; 320: 120760, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464116

RESUMO

Chlorpyrifos (CP) is a commonly used organophosphorous pesticide that is frequently utilised in the agricultural industry because of its great efficiency and inexpensive cost. The focus of the present study was to assess the impact of CP toxicity on Brassica juncea L. and to unravel the ameliorative potential of phytohormone, 24-epibrassinolide (EBL) mediated plant-microbe (Pseudomonas aeruginosa (B1), Burkholderia gladioli (B2)) interaction in B. juncea L. The maximum significant increment in the total chlorophyll, carotenoids, xanthophyll, anthocyanin and flavonoid content with EBL and B2 treatment in CP stressed B. juncea seedlings on spectrophotometric analysis were observed. Autofluorescence imaging of photosynthetic pigments i.e. chlorophyll, carotenoids, and total phenols with confocal microscopy showed maximum fluorescence with EBL and B2. Furthermore, when compared to CP stressed seedlings, scanning electron microscopy (SEM) study of the abaxial surface of leaves revealed a recovery in stomatal opening. The supplementation of EBL and PGPR (plant growth promoting rhizobacteria) improved the level of psb A (D1 subunit PSII) and psb B (CP 47 subunit of PSII) genes expression. The expression analysis of chalcone synthase (CHS), Phenylalanine ammonialyase (PAL), Phyotene synthase (PSY) with RT-PCR system showed up-regulation in the expression when supplemented with EBL and PGPR. As a result, the current study suggests that EBL and PGPR together, can reduce CP-induced toxicity in B. juncea seedlings and recovering the seedling biomass.


Assuntos
Clorpirifos , Clorpirifos/toxicidade , Clorpirifos/metabolismo , Mostardeira/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Plântula
15.
Plant Physiol Biochem ; 194: 651-663, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36563571

RESUMO

The participation of nitric oxide (NO) in wheat plant tolerance to salinity stress (SS) brought about by hydrogen sulphide (H2S) via modifying the ascorbate-glutathione (AsA-GSH) cycle was studied. The SS-plants received either 0.2 mM sodium hydrosulfide (NaHS; H2S donor), or NaHS plus 0.1 mM sodium nitroprusside (SNP; a NO donor) through the nutrient solution. Salinity stress decreased plant growth, leaf water status, leaf K+, and glyoxalase II (gly II), while it elevated proline content, leaf Na+ content, oxidative stress, methylglyoxal (MG), glyoxalase I (gly I), the superoxide dismutase, catalase and peroxidase activities, contents of endogenous NO and H2S. The NaHS supplementation elevated plant development, decreased leaf Na+ content and oxidative stress, and altered leaf water status, leaf K+ and involved enzymes in AsA-GSH, H2S and NO levels. The SNP supplementation boosted the positive impact of NaHS on these traits in the SS-plants. Moreover, 0.1 mM cPTIO, scavenger of NO, countered the beneficial effect of NaHS by lowering NO levels. SNP and NaHS + cPTIO together restored the beneficial effects of NaHS by increasing NO content, implying that NO may have been a major factor in SS tolerance in wheat plants induced by H2S via activating enzymes connected to the AsA-GSH cycle.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Óxido Nítrico/farmacologia , Triticum/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Estresse Salino , Plântula/metabolismo
16.
Front Genet ; 14: 1329339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38390455

RESUMO

Leishmaniasis, a parasitic disease caused by different species of the protozoa parasite Leishmania, is a neglected tropical human disease that is endemic in about a hundred countries worldwide. According to the World Health Organization (WHO), the annual incidence of cutaneous leishmaniasis (CL) is estimated to be 0.7-1.2 million cases globally, whereas the annual incidence of visceral leishmaniasis is estimated to be 0.2-0.4 million cases. In many eukaryotic organisms, including human beings and protozoan parasites, centrin genes encode proteins that play essential roles within the centrosome or basal body. Human microRNAs (miRNAs) have been linked to several infectious and non-infectious diseases associated with pathogen-host interactions, and they play the emphatic roles as gene expression regulators. In this study, we used the MirTarget bioinformatics tool, which is a machine learning-based approach implemented in miRDB, to predict the target of human miRNAs in Leishmania donovani centrin genes. For cross-validation, we utilized additional prediction algorithms, namely, RNA22 and RNAhybrid, targeting all five centrin isotypes. The centrin-3 (LDBPK_342160) and putative centrin-5 (NC_018236.1) genes in L. donovani were targeted by eight and twelve human miRNAs, respectively, among 2,635 known miRNAs (miRBase). hsa-miR-5193 consistently targeted both genes. Using TargetScan, TarBase, miRecords, and miRTarBase, we identified miRNA targets and off-targets in human homologs of centrin, inflammation, and immune-responsive genes. Significant targets were screened based on GO terminologies and KEGG pathway-enrichment analysis (Log10 p-value >0.0001). In silico tools that predict the biological roles of human miRNAs as primary gene regulators in pathogen-host interactions help unravel the regulatory patterns of these miRNAs, particularly in the early stages of inflammatory responses. It is also noted that these miRNAs played an important role in the late phase of adaptive immune response, inclusively their impacts on the immune system's response to L. donovani.

17.
Front Cell Infect Microbiol ; 13: 1322778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38332949

RESUMO

The advent of nanotechnology has been instrumental in the development of new drugs with novel targets. Recently, metallic nanoparticles have emerged as potential candidates to combat the threat of drug-resistant infections. Diabetic foot ulcers (DFUs) are one of the dreadful complications of diabetes mellitus due to the colonization of numerous drug-resistant pathogenic microbes leading to biofilm formation. Biofilms are difficult to treat due to limited penetration and non-specificity of drugs. Therefore, in the current investigation, SnO2 nanoparticles were biosynthesized using Artemisia vulgaris (AvTO-NPs) as a stabilizing agent and were characterized using ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the efficacy of AvTO-NPs against biofilms and virulence factors of drug-resistant Candida albicans strains isolated from DFUs was assessed. AvTO-NPs displayed minimum inhibitory concentrations (MICs) ranging from 1 mg/mL to 2 mg/mL against four strains of C. albicans. AvTO-NPs significantly inhibited biofilm formation by 54.8%-87%, germ tube formation by 72%-90%, cell surface hydrophobicity by 68.2%-82.8%, and exopolysaccharide (EPS) production by 69%-86.3% in the test strains at respective 1/2xMIC. Biosynthesized NPs were effective in disrupting established mature biofilms of test strains significantly. Elevated levels of reactive oxygen species (ROS) generation in the AvTO-NPs-treated C. albicans could be the possible cause of cell death leading to biofilm inhibition. The useful insights of the present study could be exploited in the current line of treatment to mitigate the threat of biofilm-related persistent DFUs and expedite wound healing.


Assuntos
Artemisia , Diabetes Mellitus , Pé Diabético , Nanopartículas Metálicas , Candida albicans , Fatores de Virulência/farmacologia , Estanho/farmacologia , Azóis/farmacologia , Óxidos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Biofilmes , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química
18.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501342

RESUMO

The present study was carried out to explore the possible role of kinetin and gibberellic acid (GA3) on faba bean under chromium (Cr) stress. Cr treatment negatively affected growth and biomass production, reduced photosynthetic pigments, and inhibited photosynthesis, gas exchange parameters, antioxidant enzymes, and the glyoxylase cycle. Moreover, Cr stress enhanced the production of malondialdehyde (MDA, 216.11%) and hydrogen peroxide (H2O2, 230.16%), electrolyte leakage (EL, 293.30%), and the accumulation of proline and glycine betaine. Exogenous application of kinetin and GA3 increased growth and biomass, improved pigment contents and photosynthesis, as well as up-regulated the antioxidant system by improving the antioxidant enzyme activities and the content of nonenzymatic components, and the glyoxylase cycle. Additionally, kinetin and GA3 application displayed a considerable enhancement in proline (602.61%) and glycine betaine (423.72), which help the plants to maintain water balance under stress. Furthermore, a decline in Cr uptake was also observed due to kinetin and GA3 application. Exogenous application of kinetin and GA3 ameliorated the toxic effects of Cr in faba bean plants, up-shooting the tolerance mechanisms, including osmolyte metabolism and the antioxidant system.

19.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296438

RESUMO

ß-cyclocitral (ßCC), a main apocarotenoid of ß-carotene, increases plants' resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, ßCC marked as stress signals that accrue under adverse ecological conditions. ßCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. In this review, an attempt has been made to summarize the recent findings of the potential role of ßCC. We emphasize the ßCC biosynthesis, signaling, and involvement in the regulation of abiotic stresses. From this review, it is clear that discussing compound has great potential against abiotic stress tolerance and be used as photosynthetic rate enhancer. In conclusion, this review establishes a significant reference base for future research.


Assuntos
Diterpenos , beta Caroteno , beta Caroteno/metabolismo , Plantas/metabolismo , Diterpenos/metabolismo , Aldeídos/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
20.
Foodborne Pathog Dis ; 19(11): 750-757, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301255

RESUMO

Milk is a putrescible commodity that is extremely prone to microbial contamination. Primarily, milk and dairy products are believed to be easily contaminated by pathogenic microorganisms, including Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. The microbiological quality of raw milk and dairy products regarding foodborne pathogens is of paramount importance due to concern of human health. In this study 400 buffalo raw milk samples were screened for assessing the prevalence of L. monocytogenes, Salmonella spp., and S. aureus. This study implemented uniplex-polymerase chain reaction (u-PCR) and multiplex-polymerase chain reaction (m-PCR) assays for the fast simultaneous detection of these pathogens comparing to the conventional culturing methods. Raw milk samples were found contaminated with the prevalence of 2.2%, 4.0%, and 14.2% for L. monocytogenes, Salmonella spp., and S. aureus, respectively. These pathogens were detected with the optimized polymerase chain reaction assays after 6 h of enrichment. u-PCR and m-PCR demonstrated the limit of detection as 104, 102, and 10 cells/mL after 6, 12, 18, and 24 h for each culture of the pathogens. A high sensitivity (10 colony-forming unit [CFU]/mL) of the m-PCR protocol was noted. The developed protocol is a cost-effective and rapid method for the simultaneous detection of pathogens associated with raw milk and dairy industries.


Assuntos
Listeria monocytogenes , Leite , Animais , Humanos , Leite/microbiologia , Búfalos , Staphylococcus aureus/genética , Listeria monocytogenes/genética , Salmonella/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Microbiologia de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...